
On the Seeding of Self-Reproducing Systems

Amor Menezes and Pierre Kabamba

Department of Aerospace Engineering
University of Michigan

Ann Arbor, Michigan 48109-2140

amenezes@umich.edu, kabamba@umich.edu

November 4, 2008

Abstract

This report is motivated by the need to minimize the payload mass required to establish an ex-
traterrestrial robotic colony. One approach for this minimization is to deploy a colony consisting
of individual robots capable of self-reproducing. An important consideration for the establishment
of such a colony is the identification of a seed. Since self-reproduction is achieved by the actions of
a robot on available resources, a seed for the colony consists of a set of robots and a set of resources.
In this work, we discuss possible approaches to the seeding problem under certain assumptions,
providing three novel algorithms to determine a seed for a self-reproducing system. Two of these
algorithms find optimal seeds for particular classes of self-reproducing systems. Here, optimality
is understood as the minimization of a cost function of the resources and robots. Illustrations of
each algorithm are provided.

Contents

1 Introduction 1
1.1 Motivation .. 2
1.2 Background . 3
1.3 Difficulty of the Seeding Problem 6

2 The SIGA Algorithm 8
2.1 Assumptions and Problem Definition 8
2.2 Methodology .10
2.3 Pseudocode .13
2.4 Example Application 16
2.5 Limitations .. 21

3 The RSI Algorithm 23
3.1 Assumptions and Problem Definition 23
3.2 Methodology .25
3.3 Properties .. 31
3.4 Example Application 32
3.5 Limitations .. 35

4 The SI Algorithm 37
4.1 Assumptions and Problem Definition 37
4.2 Methodology .38
4.3 The LS Sub-Algorithm .. . 39
4.4 Pseudocode .41
4.5 Properties .. 42
4.6 Example Application 43

5 Conclusions and Future Work 46

A Product Manufacturing Cycle Model 47

B RSI Algorithm Proofs 49

C SI Algorithm Proofs 57

i

List of Figures

1.1 Pictorial representation of Definition 1.1. 4
1.2 The directed reproduction graph of (1.1). 4

2.1 Replication process of the Suthakorn-Kwon-Chirikjian robot. 16
2.2 Directed graph representation of the Suthakorn-Kwon-Chirikjian robot. 18
2.3 Directed graph representation of the biological cycle in an aquarium. 21

3.1 A weakly connected digraph representing two families. 25
3.2 Directed graph representation of the modified Suthakorn-Kwon-Chirikjian robot. . 33
3.3 Directed graph representation of the ozone cycle being attacked by chlorine. 35

A.1 Directed graph representation of a product manufacturing cycle. 47

ii

Chapter 1

Introduction

Recent scientific research in self-reproduction has raised the prospect of advances in such diverse

areas as space colonization, bioengineering, evolutionary software and autonomous manufactur-

ing. Inspired by the work of John von Neumann [1], extensive study of self-reproducing systems

has taken place, including cellular automata, computer programs, kinematic machines, molecu-

lar machines, and robotic colonies. A comprehensive overview of the field is documented in [2]

and [3].

Von Neumann postulated the existence of a threshold of complexity below which any attempt at

self-reproduction was doomed to degeneracy. However, he did not define either complexity or de-

generacy, nor did he compute the threshold’s value. An extensive literature survey in [4] indicates

that no one had published an evaluation of this threshold in the following 60 years. Recently, [5]

developed a novel theory of generation that is able to compute this von Neumann threshold. The

results included a necessary and sufficient condition for non-degenerate offspring, i.e., offspring

with the same reproductive capability as the progenitor. Reference [6] presented a probabilistic ver-

sion of these results, and also demonstrated parallels withinformation theory. References [7], [8],

and [9] extended these results by providing algorithms thatidentified a seed for various classes of

self-reproducing systems. Two of these algorithms produceoptimal seeds. This work is a more

detailed exposition on all three algorithms.

1

The remainder of this chapter presents a rationale for the identification of a seed for a self-

reproducing system and discusses what makes the general seeding problem difficult. Chapters 2

through 4 highlight the results of solutions to seeding while examining their advantages and lim-

itations; chapter 2 documents the Seed Identification and Generation Analysis (SIGA) algorithm,

chapter 3 details the Restricted Seed Identification (RSI) algorithm, and chapter 4 documents the

general Seed Identification (SI) algorithm. Each chapter presents the necessary assumptions and

definitions for seed identification, analyzes the properties of a seeding algorithm, and provides at

least one illustrative example. Chapter 5 presents conclusions.

1.1 Motivation

Within the context of extra-terrestrial colonization, current phased approaches to Martian explo-

ration see the development of an enduring robotic presence on the Moon in the next five years.

Several space agency roadmaps, of which [10] is typical, suggest that individual countries will de-

ploy advanced robots on an as-needed basis to expand the sizeof an established colony. It is well

known, however, that for every unit mass of payload to be launched into space, eighty additional

units of mass must be launched as well [11] - hence the motivation to endow robots with the ca-

pacity for self-reproduction. These machines would be ableto utilize on-site resources to enlarge

their numbers when deemed necessary for a given task. Extra-terrestrial systems with such capa-

bility are less dependent than traditional colonies on the fiscal constraints of multiple launches of

robots. Self-reproduction may therefore provide a highly cost-effective option for extra-terrestrial

colonies.

To minimize mass, it would be even more efficient to identify the required initial elements for

a self-reproducing system, and send the smallest quantity of these into space. The identification of

this “seed” is the goal of this report.

2

1.2 Background

We first define the following terms for use throughout the work: reproduction, replication, self-

reproduction, and self-replication. For a historical perspective of the first two terms, the reader

is referred to Freitas’ excellent discussion on the subjectin [2]. We consider reproduction in bi-

ological systems to encompass the capacity for genetic mutations and evolution. Thus from an

information standpoint, reproduction involves a change tothe DNA code during the generation of

progeny. Likewise, we will takereproductionin an artificial generation system to imply a change

in the information specifications of an offspring. We reserve the termreplication for progeny that

have identical information content to that of the progenitor. Self-reproducingandself-replicating

will be used to refer to those entities that perform the information equivalent of asexual reproduc-

tion or mitosis, i.e., the entities can reproduce or replicate based on the information specifications

of only one progenitor.

The reader is referred to [5] for details of Generation Theory. Briefly, the theory formalizes self-

reproduction by “machines,” a term describing any entity that is capable of producing an offspring

regardless of its physical nature. Hence a robot, a bacterium, or even a piece of software code

is considered to be a machine in this theory if they can each produce another robot, bacterium or

some lines of code respectively. These machines utilize resources to self-reproduce. A selected

resource is manipulated by the parent machine via an embedded generation action to produce an

outcome, which itself may or may not be a machine. Thus, we canstate the following:

Definition 1.1. A generation systemis a quadrupleΓ = (U,M,R,G), where

• U is a universal setthat contains machines, resources and outcomes of attemptsat self-

reproduction;

• M ⊆ U is aset of machines;

• R ⊆ U is aset of resourcesthat can be utilized for self-reproduction; and,

3

• G : M × R → U is a generation functionthat maps a machine and a resource into an

outcome in the universal set.

It is possible thatM ∩ R 6= ⊘, and alsoM ∪ R 6= U , as illustrated in Fig. 1.1. The former

implies that machines can belong to the set of resources, andthe latter states that outcomes of

attempts at generation may be neither machines nor resources.

U

M R

Figure 1.1: Pictorial representation of Definition 1.1.

When a machinex ∈M processes a resourcer ∈ R to generate an outcomey ∈ U , we write:

y = G(x, r). (1.1)

In (1.1), we say that “x is capable of generatingy,” and we call the processreproduction. If we

havex = G(x, r) then we say that “x is capable of generating itself,” and we call the process

replication.

We also use concepts from graph theory [12] in this paper. Equation (1.1) may be represented

by adirected reproduction graph, γ, as shown in Fig.1.2. In this diagram, machinex and outcome

y are vertices, resourcer is an edge, and the direction of the edge indicates that machinex uses

resourcer to generate outcomey.

r
x

y

Figure 1.2: The directed reproduction graph of (1.1).

4

Definition 1.2. Thedirected graph representationof a generation systemΓ = (U,M,R,G) is the

directed supergraph(V,E) containing all directed reproduction graphs that produce machines in

M . Thus the vertex set,V , of the supergraph is the machine set,M , and the edge set,E, of the

supergraph is the set{r ∈ R|y = G(x, r), x ∈M, y ∈M}.

Definition 1.3. Thegeneration setsin a generation system are defined as:

• M0 = M , the set of all machines;

• Mi+1, the set of all machines that are capable of producing a machine ofMi, ∀i ≥ 0. That

is, for x ∈Mi+1, ∃ y ∈Mi such thaty = G(x, r).

These sets are nested with the innermost generation set being important for self-reproduction.

This set can be defined as:

M∞ =
∞
⋂

i=0

Mi. (1.2)

It is shown in [5] that generation always proceeds outwards.Also, the notion of the rank of a

generation system, as defined below, is emphasized.

Definition 1.4. The rank of a generation system, ρ(Γ), whereΓ = (U,M,R,G) with generation

setsMi, i ≥ 0, is the smallest integerρ such thatMρ = Mρ+1. If ∀i,Mi 6= Mi+1, then the

generation system has infinite rank.

For a generation system of finite rankρ, the nesting of the generation sets stop at the integerρ.

All generation sets of order greater thanρ, includingM∞, are equal toMρ. A generation system

that has a finite number of machines always has finite rank.

Definition 1.5. The rank of a machine, ρ(x), in a generation systemΓ = (U,M,R,G) with

generation setsMi, i ≥ 0, andρ(Γ) = ρ, is equal toi if x ∈ Mi\Mi+1 (“deficient generation

rank”), or is equal toρ if x ∈
⋂

∞

i=0
Mi (“full generation rank”).

Definition 1.6. A generation cycleis a sequence of generations resulting in the production of a

machine identical to itself aftern generations.

5

Machines capable of replication (i.e., a generation cycle of order one) in a generation system

must belong toM∞, and any exit fromM∞ is irreversible. It is possible for offspring machines to

belong toM∞ as long as their progenitors do as well. Thus the requirements for non-degenerate

reproduction and replication are quantified. It is proved in[5] that there is a minimum threshold of

rank above which a machine is able to generate an offspring without a decrease in generation rank.

We call this thevon Neumann Rank Threshold, τr, which satisfies

τr = ρ(Γ). (1.3)

The reader is referred to the material in [5] for proofs of theabove statements, as well as many

other insights into the information requirements of self-reproducing systems.

We can use a compact notation to denote a sequential selection of resources. Let(rµ) be a

sequence ofµ resources fromR. We define the notation

G (x, (rµ)) := G(. . . G(G(x, r1), r2) . . . , rµ).

1.3 Difficulty of the Seeding Problem

Many factors contribute to the inherent difficulty of seeding, including:

(a) the possibility that a given generation system is made up of multiple, disjoint subsystems,

each with a different seed. Alternatively, there could be multiple, intersecting subsystems,

with some common seed elements in each subsystem. Any seeding algorithm would have to

be able to deal with both possibilities without anya priori knowledge about the system.

(b) the potential for generation cycles within a given self-reproducing system. If a cycle exists,

then one wonders which machine in the cycle, if any, should belong to the seed.

(c) the fact that degenerate machines should not belong to the seed for a self-reproducing system.

On the other hand, if all the machines in the generation system are degenerate, then one must

6

identify a machine that is of highest generation rank to seedthe system.

(d) the complexity of the resource set. A consistent theme in theliterature is that a machine

operates on an ordered list of elements constituting a resource. This list can include duplicates

of elements contained in another resource that is also an ordered list. In addition, each list can

also include machines.

(e) the existence of self-reproducing systems where the production of copies of a progenitor re-

quire the assistance of its offspring. Such systems are prevalent; examples include the Krebs

cycle in a cell [13], the atmospheric ozone cycle and the atmospheric ozone cycle attacked by

chlorine [14], the nitrogen cycle when starting a new aquarium [15], and some manufacturing

systems as described in AppendixA. Typically, this phenomenon manifests itself as a combi-

nation of (b) and (d), when a resource employed at some stage of a generation cycle contains

a machine that is generated at a different stage in the cycle.It is not always clear whether to

include the progenitor, its offspring, or both, in the seed.

It is perhaps because of all of these factors that the seedingproblem is still mostly open. We

approach this problem by first considering a simplified generation system under restrictive assump-

tions, for which a seed is easily identified. This gives us theSeed Identification and Generation

Analysis (SIGA) algorithm. The restrictive assumptions are then systematically relaxed to yield a

more general seeding methodology.

7

Chapter 2

The SIGA Algorithm

To formulate the seed requirements of a self-reproducing system in a mathematically precise way,

we make some assumptions about the generation system. Theseassumptions help structure the

seeding problem but, in some cases, unfortunately make non-optimal seeds possible, as described.

2.1 Assumptions and Problem Definition

We start by listing the basic assumptions required to seed a generation system.

Assumption 2.1.Both the number of machines and the number of resources are finite.

Assumption 2.2.An inexhaustible supply of each resource is available.

Assumption 2.3.All the machines in the generation system must be produced, although they need

not all belong to a seed.

We now make assumptions with respect to both machines and resources. We first assume that

every resource in the setR of a generation system is utilized by a progenitor machine sothat

another machine can be produced.

Assumption 2.4.Let Γ = (U,M,R,G) be a generation system. We assume that∀r ∈ R,∃x ∈M

such thatG(x, r) ∈M .

8

This assumption simplifies the selection procedure of resources since it implies that all re-

sources are necessary to produce offspring. Hence, a seeding algorithm can simply identify all

possible resources as constituents of a seed. If we accept that all resources are necessary however,

then we allow ourselves the possibility of selecting redundant resources. For instance, if there exist

two resources such that a progenitor machine will produce the same offspring with each of those

two resources, then by taking both resources in the seed, a redundant selection has been made and

the resulting seed is non-optimal. We ignore this possibility and consider it an avenue for future

refinement.

We allow for complexity within the resource set, and enable each resource to contain an ordered

list of physical elements that may include machines. We therefore define a containment relation as

follows.

Definition 2.1. If machinexi belongs to an ordered list of the elements of resourcerj, then we say

thatxi is containedin rj, and we writexi ≺ rj, where “≺” is thecontainment relation.

Of course, if machinexi is a resource itself, then this relation still holds true. Weneed the

following definition as well, before stating an assumption on resources that has been made in all

literature to date.

Definition 2.2. If machinesx1, x2, . . . , xν are contained in resourcer, then we use the notation

r\(x1, x2, . . . , xν) to refer to an ordered list of the elements ofr that does not contain the machines

x1, x2, . . . , xν .

Assumption 2.5. Let Γ = (U,M,R,G) be a generation system. We assume that if machinex is

contained in resourcer, x ≺ r, then the ordered list of the elements ofr that does not contain the

machinex also belongs to the set of resources, i.e.,r\x ∈ R.

Next, we assume that every machine in the generation system has a progenitor machine.

Definition 2.3. A surjective generation systemis a generation systemΓ = (U,M,R,G) where

∀y ∈M,∃x ∈M , and∃r ∈ R such thaty = G(x, r).

9

We further assume that there exists a machine in the generation system that is capable of pro-

ducing any machine in the system afterµ generations. This is a special case of a surjective gener-

ation system.

Assumption 2.6.We assume that in the generation systemΓ = (U,M,R,G), ∃x0 ∈M such that

∀x1 ∈M,∃µ1 ≤ µ,∃r1, r2, . . . , rµ1
selected fromR such that

G (x0, (rµ1
)) = x1.

This rather restrictive assumption will give us the SIGA algorithm.

Definition 2.4. A seed forΓ of orderµ is a set

S = MS ∪RS, where

MS = {x0}, MS ⊆M , and

RS = {r1, r2, . . . , rµ}, RS ⊆ R,

such that∀y1 ∈M,∃µ1 <∞,∃(rµ1
) ∈ RS, such that

G(x0, (rµ1
)) = y1.

We can now state the following.

Seed Identification Problem 1.GivenΓ, determine a seed under Assumptions2.1through2.6.

2.2 Methodology

To solve Seed Identification Problem1, we need to remove all degenerate machines from the sets

M andR to determineMS andRS, and select one of the remaining non-degenerate machines to

be x0. The approach to developing a seed identification algorithmis similar to the Generation

10

Analysis Algorithm (GAA) [5], and in fact utilizes the GAA inits operation. The GAA employs

the concept of anouter layer, first introduced in [5] and defined as follows.

Definition 2.5. Theouter layerof a generation systemΓ = (U,M,R,G) is the setM0\M1. This

is the set of machines such that, no matter what resource theyuse, they produce an offspring that

is no longer a machine, i.e.,

M0\M1 = {x ∈M : ∀r ∈ R,G(x, r) /∈M}.

After an outer layer is removed, a generation system of reduced rank remains. The GAA works

by “peeling away” the outer layers of each of the resultant generation systems. We apply a similar

notion to the development of the SIGA algorithm, having the algorithm peel away outer layers in

both the set of machines and the set of resources, before picking one machine and the remaining

resources to belong to the seed set.

By Assumption2.4, any resource that does not contain a machine is assigned to be the seed.

Next, the machines in the outer layer,M0\M1, are of lowest rank, do not help to perpetuate the

system, and hence should not be in the seed,S. Thus, the outer layer of the machine set needs to

be identified.

Let M = {x1, x2, . . . , xn} and consider theDescendancy Matrix, defined as then × n matrix

of integers,D, such that

Dij =















1, if ∃r ∈ R : xj = G(xi, r);

0, otherwise,

(2.1)

that is,Dij = 1 if machinexi is capable of generating machinexj, andDij = 0 otherwise.

Now let R = {r1, r2, . . . , rm} and consider theContainment Matrix, defined as then × m

11

matrix of integers,C, such that

Cij =















1, if xi ≺ rj;

0, otherwise,

(2.2)

that is,Cij = 1 if machinexi is contained in resourcerj, or is indeed a resource itself, andCij = 0

otherwise.

Let theSeed Matrix, be defined as then× (n + m) matrix of integers,Σ, such that

Σ =

[

D C

]

. (2.3)

Then the set of resources that do not contain any machine consists of those resources such that

the corresponding columns of matrixC are zero. These columns may be removed fromΣ, and the

respective resources included inS. The outer layer ofM consists of those machines in the matrix

D that have corresponding rows of zeros. These rows, and the corresponding machine columns

(even if not all zero), may be removed fromΣ, and the respective machines added toS̄, the set

that is not the seed. If any of the removed machines exactly equals one of the resources, then that

corresponding column may be removed fromC as well.

We are now left with a reduced order generation system, that can be seeded in a similar fashion.

The process of removing resources in the containment matrix, followed by removing lower-rank

machines in the descendancy matrix and possibly in the containment matrix too, can be repeated to

deflate the seed matrix until there are no more resources to remove. In each iteration, the columns

of zeros in the matrixC denote those resources that are devoid of lower-rank machines. Of course,

if a particular resource is nothing but a lower-rank machine, then this algorithm removes it from

inclusion in the seed.

Once the iterations are over, one of two conditions may occur. It could be that all columns of

the containment matrix have been removed, leaving nothing but the descendancy matrix. Thus all

µ resource elements ofS have been found, withµ ≤ m. If D can be further deflated, then this

should be continued to obtain the machine of highest rank. When deflations ofD are no longer

12

possible, the machine of highest rank can be added as thex0 required byS. If several machines

are of equally high rank, then any one of these machines may beselected asx0.

If, on the other hand, there are still resource columns left,but they cannot be removed due

to the presence of a 1, then each resource can now be added toS as long as we deal with the

corresponding machines that the resource requires (the rows with the 1). These machines are all of

equal rank. By Definition2.4, we can pick any one of these machines to be the requiredx0 for S.

In short, of the difficulties listed in Section1.3, (c) is effectively handled, (b) and (d) are

ineffectively handled, and (a) and (e) are not handled.

The SIGA algorithm as stated is guaranteed to stop after a finite number of steps. This is

because each iteration removes elements from a set with finite cardinality, stopping once the set is

depleted. We summarize the algorithm in Section2.3.

2.3 Pseudocode

Input: a generation systemΓ = (U,M,R,G), where the setsM = {x1, x2, . . . , xn} andR =

{r1, r2, . . . , rm} satisfy Assumptions2.1through2.6.

Outputs: the sets(M0\M1), (M1\M2), . . ., (Mρ−1\Mρ), Mρ = M∞, the von Neumann rank

thresholdτr = ρ(Γ), the seed setS, and its orderµ.

1: Compute then×n descendancy matrixD, then×m containment matrixC, and then×(n+m)

seed matrixΣ.

2: Initialize i = 0, µ = 0.

3: while R is not empty, andC has at least one column of zeros, andM is not emptydo

4: for each column of zeros inC do

5: Add rj to S.

6: µ← µ + 1.

7: end for

8: UpdateR by removing the resource elements corresponding to zero columns ofC.

13

9: UpdateΣ by removing the corresponding zero columns ofC.

10: return (Mi\Mi+1), the set of machines corresponding to zero rows ofD.

11: UpdateM by removing the machines corresponding to zero rows ofD.

12: UpdateΣ by removing the zero rows and corresponding zero columns ofD, and any

columns inC for which the resource exactly equals the machine that has a zero row in

D.

13: if machines have been removed in this iterationthen

14: i← i + 1.

15: end if

16: end while

17: if R is emptythen

18: while M is not empty andD has at least one row of zerosdo

19: return (Mi\M
ǫ
i+1), the set of machines corresponding to zero rows ofD.

20: UpdateM by removing the machines corresponding to zero rows ofD.

21: UpdateΣ by removing the zero rows and corresponding zero columns ofD.

22: if machines have been removed in this iterationthen

23: i← i + 1.

24: end if

25: end while

26: return µ.

27: return (M∞)←M .

28: if |M∞| > 1 then

29: Pick an element of(M∞) to add toS.

30: else

31: Add machine in(M∞) to S.

32: end if

33: end if

14

34: if C does not have a column of zerosthen

35: while M is not empty andD has at least one row of zerosdo

36: return (Mi\Mi+1), the set of machines corresponding to zero rows ofD.

37: UpdateM by removing the machines corresponding to zero rows ofD.

38: UpdateΣ by removing the zero rows and corresponding zero columns ofD.

39: if machines have been removed in this iterationthen

40: i← i + 1.

41: end if

42: for each column of zeros inC do

43: Add rj to S.

44: end for

45: UpdateR by removing the resource elements corresponding to zero columns ofC.

46: UpdateΣ by removing the corresponding zero columns ofC.

47: end while

48: for each remaining column inC do

49: Add rj\(x ∈M) to S.

50: µ← µ + 1.

51: Pick a machine for whichrj has a one in its row toS.

52: UpdateR by removing these resources.

53: UpdateΣ by removing the last columns ofC.

54: end for

55: return µ.

56: return (M∞)←M .

57: end if

58: return τr ← i.

15

2.4 Example Application

We can use Generation Theory and the SIGA algorithm to analyze theSemi-Autonomous Replicat-

ing Systemdesigned by Chirikjian et al. [16,17].

We takeM to be the set of all entities that are made up of two or more LEGOMindstorm kit

components fixed together in some way. Let

M = {x1, x2, x3, x4, x5, x6, x7, x8, x9}, and

R = {r1, r2, r3, r4, r5, r6, r7, r8, r9},

where we define each of the constituent machines and resources in the following manner. The

sequence of generation steps is also outlined. The replication process is illustrated in Fig.2.1[16].

Figure 2.1: Replication process of the Suthakorn-Kwon-Chirikjian robot.

x1 := prototype robot

r1 := (conveyor-belt/sensor unit, docking unit, electrical connector, central controller unit

16

(CCU), electrical cable)

x2 := chassis assembly station

x2 = G(x1, r1)

r2 := chassis

x3 := chassis aligned in assembly position

x3 = G(x1, r2)

r3 := (robot control system,x3)

x4 := RCX-chassis assembly

x4 = G(x2, r3)

r4 := gripper assembly/disassembly station:= (CCU, electrical connector, ramp and lift sys-

tem, gripper)

x5 := prototype robot with gripper

x5 = G(x1, r4)

x1 = G(x5, r4)

r5 := (left LEGO hook, right LEGO hook, CCU, electrical connector, stationary docking sen-

sor, motorized pulley unit)

x6 := motor and track assembly station

x6 = G(x5, r5)

r6 := (left LEGO track, right LEGO track)

x7 := tracks aligned onto hooks

x7 = G(x1, r6)

r7 := (motor/sensor unit,x4)

x8 := RCX-chassis-motor assembly, moved to position

x8 = G(x1, r7)

r8 := (x7, x8)

x9 := prototype robot on hooks

x9 = G(x6, r8)

17

r9 := x9

x1 = G(x1, r9)

It follows that we have the generation diagram indicated in Fig. 2.2.

r1

r2

r3 ≻ x3

r4 r4

r5

r6

r7 ≻ x4

r8 ≻ (x7, x8)

r9 ≻ x9

x1

x2 x3

x4

x5

x6

x7

x8

x9

Figure 2.2: Directed graph representation of the Suthakorn-Kwon-Chirikjian robot.

With the SIGA algorithm,

D0 =



























































x1 x2 x3 x4 x5 x6 x7 x8 x9

x1 1 1 1 0 1 0 1 1 0

x2 0 0 0 1 0 0 0 0 0

x3 0 0 0 0 0 0 0 0 0

x4 0 0 0 0 0 0 0 0 0

x5 0 0 0 0 0 1 0 0 0

x6 0 0 0 0 0 0 0 0 1

x7 0 0 0 0 0 0 0 0 0

x8 0 0 0 0 0 0 0 0 0

x9 0 0 0 0 0 0 0 0 0



























































,

18

C0 =



























































r1 r2 r3 r4 r5 r6 r7 r8 r9

x1 0 0 0 0 0 0 0 0 0

x2 0 0 0 0 0 0 0 0 0

x3 0 0 1 0 0 0 0 0 0

x4 0 0 0 0 0 0 1 0 0

x5 0 0 0 0 0 0 0 0 0

x6 0 0 0 0 0 0 0 0 0

x7 0 0 0 0 0 0 0 1 0

x8 0 0 0 0 0 0 0 1 0

x9 0 0 0 0 0 0 0 0 1



























































,

Σ0 =

[

D0 C0

]

,

so thatr1, r2, r4, r5 andr6 are immediately identified as part of the seed. The descendancy matrix

D0 can also be deflated, yielding

M0\M1 = {x3, x4, x7, x8, x9}.

We are left with

D1 =



























x1 x2 x5 x6

x1 1 1 1 0

x2 0 0 0 0

x5 0 0 0 1

x6 0 0 0 0



























,

19

C1 =



























r3 r7 r8 r9

x1 0 0 0 0

x2 0 0 0 0

x5 0 0 0 0

x6 0 0 0 0



























,

Σ1 =

[

D1 C1

]

,

so thatr3\x3, r7\x4, r8\(x7, x8), andr9\x9 now belong to the seed, and also

M1\M2 = {x2, x6}.

SinceR is now empty, we continue to operate only on the machine set.

D2 =













x1 x5

x1 1 1

x5 0 0













,

giving us

M2\M3 = {x5}.

Lastly, the matrix that is left is

D3 =







x1

x1 1






,

which cannot be further reduced, yielding

M3 = M∞ = {x1},

20

andτr = 3. The seed set of order 9 for this system is

S = {x1} ∪ {r1, r2, r3\x3, r4, r5, r6, r7\x4, r8\(x7, x8), r9\x9}.

We have thus obtained a very logical, yet informative result- the original robot is (of course!)

needed to initiate the system, assuming the existence of plentiful resources.

2.5 Limitations

The two immediate limitations in the SIGA algorithm stem directly from Assumption2.6. There

are many instances where one machine is incapable of producing all the other machines in the

generation system; a simple example is the naturally occurring “biological cycle” required to start

an aquarium [15]. The generation diagram of this self-reproducing system is illustrated in Fig.2.3,

using the model:

M := {x1, x2, x3, x4}, and

R := {r1, r2, r3, r4},

where we define each of the constituent machines and resources in the following manner. The

sequence of generation steps is also outlined.

r1

r2 ≻ x3

r3

r4 ≻ x2

x1

x2 x3

x4

Figure 2.3: Directed graph representation of the biological cycle in an aquarium.

x1 := algae

r1 := (chlorophyll,sunlight,water)

21

x2 := oxygen

x2 = G(x1, r1)

x3 := carbon dioxide

r2 := x3

x1 = G(x1, r2)

x4 := aerobic bacteria

r3 := aquarium detritus

x3 = G(x4, r3)

r4 := (x2,organic waste as ammonia or nitrite)

x4 = G(x4, r4)

In the above example, it is clear that selecting only one ofx1 andx4 will result in an incomplete

machine seed set.

Secondly, suppose that there is more than one machine that isnon-degenerate and capable of

producing all the other machines in the generation system. Of these machines, the SIGA algorithm

will pick one that is contained in the resources ofR. If more than one of these machines is con-

tained in the resources ofR, then the algorithm arbitrarily picks a seed machine. If oneconsiders

a generation cycle ofn machines andn resources where each resource contains any one of then

machines, then the SIGA algorithm breaks down because it is possible that the seed machine does

not have a full resource for the first generation step.

These shortcomings are addressed in the Restricted Seed Identification (RSI) algorithm.

22

Chapter 3

The RSI Algorithm

Here, we take a more general approach to the seeding problem,and present necessary and sufficient

conditions to find an optimal seed for a larger class of generation systems.

3.1 Assumptions and Problem Definition

Again, we start by listing the basic assumptions required toseed a generation system. Some

of the assumptions and definitions in this chapter are a repetition, but are included for chapter

completeness.

Assumption 3.1.Both the number of machines and the number of resources are finite.

Assumption 3.2.An inexhaustible supply of each resource is available.

Assumption 3.3.All the machines in the generation system must be produced, although they need

not all belong to a seed.

As in the previous chapter, we can make the following assumption about the containment of

machines in resources.

Assumption 3.4. Let Γ = (U,M,R,G) be a generation system. We assume that if machinex is

contained in resourcer, i.e.,x ≺ r, then the ordered list of the elements ofr that does not contain

the machinex also belongs to the set of resources, i.e.,r\x ∈ R.

23

The given self-reproducing system may not be surjective, and even if it is, we may not be able

to use the SIGA algorithm because Assumption2.6 may fail. To formulate seeding requirements

in a mathematically precise way, we begin by defining a seed, selecting the class of generation

systems that we will deal with, and then using the propertiesof these systems to help setup the

seeding problem.

Definition 3.1. Let Γ = (U,M,R,G) be a generation system. Aseed of orderνµ for Γ is a set

S = MS ∪RS, where

MS = {x1, x2, . . . , xν}, MS ⊆M , and

RS = {r1, r2, . . . , rµ}, RS ⊆ R,

such that∀y1 ∈M,∃µ1 <∞,∃(rµ1
) ∈ RS,∃y0 ∈MS, such thatG(y0, (rµ1

)) = y1.

In the rest of this chapter, we design an algorithm to producea seed as per the above definition.

The idea is to reduce certain generation systems into a form that can be easily seeded. We need

a few more definitions before we can indicate the type of generation systems our algorithm is

restricted to.

Definition 3.2. The generation systemΓ = (U,M,R,G) is strongly regularif whenevery =

G(x, (rµ1
)), wherex andy are machines and(rµ1

) is a sequence ofµ1 resources, we havey 6≺ r

for all r ∈ (rµ1
).

Thus, in a strongly regular generation system, no machine can be contained in its ancestry.

Definition 3.3. A family is a generation systemΓ = (U,M,R,G) where for all(x, y) ∈ M , there

existsz ∈ M , and(rn), (rm) ∈ R such thatx = G(z, (rn)) andy = G(z, (rm)). A matriarchof a

family is an elementx0 ∈M such that for allx1 ∈M,x1 6= x0, there exists(rµ1
) selected fromR

such thatG(x1, (rµ1
)) = x0.

Note that empty sequences are allowed in the above definitionof a family, so that it is possible

to consider eitherx or y to be the common ancestorz.

24

Theorem 3.1.Every family has a matriarch.

Proof. See AppendixB.

Theorem 3.2.The directed graph representation of a family is weakly connected.

Proof. See AppendixB.

The converse to Proposition3.2 is not true: a generation system whose digraph is weakly

connected need not be a family (see Fig.3.1for a counter-example).

r1 r2

x

y

z

Figure 3.1: A weakly connected digraph representing two families.

Assumption 3.5. We assume that the generation system to be seeded,Γ = (U,M,R,G), is

strongly regular and made up of one or more disjoint families.

We can now state the following.

Seed Identification Problem 2.GivenΓ, minimize the total cost of the machines and resources

in a seed under Assumptions3.1through3.5.

3.2 Methodology

Assumption3.5 helps setup the seeding problem when we note that the underlying undirected

graph of a family is connected. Since the connected components of a graph are the equivalence

classes of the path existence relation between two vertices[12], and the directed graph representa-

tion of the generation system to be seeded is made up of one or more connected components, we

25

can partition this graph into its connected components. Thus, for the class of systems in Assump-

tion 3.5, seeding the whole generation system may be accomplished byseeding each individual

family.

To seed by family, we need to determine all the descendants ofa particular machine. This is

facilitated by the notion of a “generation subsystem of a machine,” which is a subset of a particular

family and is itself a family.

Definition 3.4. Thegeneration subsystem of machinex0 is the generation system

Γx0
= (U,Mx0

, Rx0
, G)

where,

Mx0
=

∞
⋃

i=0

M i
x0

M i
x0

= {x ∈M : ∃(ri) ∈ R : x = G(x0, (ri))}

Rx0
=

∞
⋃

i=0

Ri
x0

Ri
x0

=
⋃

{(ri) ∈ R : G(x0, (ri)) ∈M}.

In Definition 3.4, M i
x0

is the set of all the descendants ofx0 produced afteri generations,Mx0

is the set of all the descendants ofx0, Ri
x0

is the set of all resource sequences of lengthi that would

produce a descendant ofx0, andRx0
is the set of all resource sequences that would produce a

descendant ofx0. Hence, the generation subsystem ofx0 is the largest family for whichx0 is a

matriarch.

The idea for the RSI algorithm is to determine the subsystems for which there exists one ma-

chine capable of generating all other machines in the subsystem. It is among these subsystems that

one may find a matriarch of a family. Consequently, individually seeding each of these subsystems

of matriarchs seeds the whole family. We will letM♀ denote the set of matriarchs.

In the generation system of a matriarch,x0, every machine in the subsystem can be produced

26

except possiblyx0 itself. Thus, in the course of seeding the subsystem ofx0, the machine to pick

for the seed set of the subsystem,Sx0
, is x0. The rationale for this process of identifying one

machine of highest rank that can generate every machine in its subsystem comes from the next two

propositions.

A necessary condition to minimize|MS| is the following.

Theorem 3.3. Let Γ = (U,M,R,G) be a family, andS be a seed set ofΓ for which |MS| is a

minimum. Then for allx ∈MS,

ρ(x) =















ρ, if |M∞| > 0;

maxy∈M ρ(y), if |M∞| = 0.

Proof. See AppendixB.

Corollary 3.1. If Γ = (U,M,R,G) is a family, and|M∞| > 0, then|MS| ≤ |M∞|. On the other

hand, if|M∞| = 0, then an optimalMS has|MS| = 1.

The first statement above follows because an optimalMS can only include machines fromM∞.

The second statement above follows because there is only onemachine for which the maximum

rank condition is satisfied, a consequence of the fact that generation always proceeds outwards [5].

A sufficient condition to minimize|MS| is the following.

Theorem 3.4. Assume that the generation subsystem of machinex, Γx = (U,Mx, Rx, G) is

strongly regular. Then a seed set forΓx, Sx, whereMSx
= {x} and RSx

= Rx\Mx has the

minimum|MSx
|.

Proof. See AppendixB.

In a strongly regular family, if a machine is contained in a resource, then that resource cannot

be utilized in any sequence of resources used to generate themachine. Hence, the notion of con-

tainment has no effect on the seeding process for these systems. This is why we restrict the class

of generation systems in this chapter to those that are solely made up of strongly regular families.

27

Assuming the given self-reproducing system ofn machines andm resources is strongly regular

and made up of one or more disjoint families, the first step of the algorithm would be to find the

generation subsystems of all the machines inM , i.e.,

Step 1

for all xi ∈M , 1 ≤ i ≤ n do

DetermineΓxi
.

end for

Since we can represent a generation system as a weighted, directed graph, we can use es-

tablished concepts of graph theory in the subsystem identification process. With each machine

(vertex) as a starting point (root) in the initial generation system (directed graph), we need to find

the subsystem (maximally connected subgraph) that can be generated (reached from the root).

Two well known algorithms to compute the reachable components in a graph are the Breadth-

First Search (BFS) and the Depth-First Search (DFS) algorithms [18–21]. Applying either of these

algorithms to the graph of the generation system in Step 1 yields Γxi
for all 1 ≤ i ≤ n. In these

subsystems, there is one machine capable of generating all machines inMxi
except possiblyxi

itself. We now want to partition the initial generation system in the following manner.

Step 2

Select theΓxi
where|Mxi

| ≥ |Mxj
|, ∀1 ≤ j ≤ n.

ThisΓxi
is the largest generation subsystem of the initial self-reproducing system. We consider

this to be our primary generation subsystem, and regard the system where the machine set is

M\Mxi
to be a secondary generation subsystem. The secondary subsystem requires the removal

of all x ∈ Mxi
from M . The idea is to seed our primary subsystem first, and then go back to

the secondary subsystem and partition and seed iteratively. By Assumption3.5, if M is strongly

regular and made up of one or more disjoint families, thenM\Mxi
is also strongly regular and

made up of one or more disjoint families. That is, the removalof one of the connected components

of the graph does not affect the remaining connected components of the graph since each connected

component is disjoint from each other.

28

In Step 2, if there are two subsystemsΓxi
andΓxj

with the same machine set, then bothxi and

xj are matriarchs for the same family. To ensure the optimal seeding of this family, we will need to

compare the cost of the seed resources when the subsystem ofxi is a primary subsystem and when

the subsystem ofxj is a primary subsystem.

However, before we can tackle seeding of a primary subsystem(and by extension, the seeding

of all other partitions), we need to ensure that the subsystem under consideration has the property

that each offspring is generated from only one resource. Thereafter, if we select all resources to be

a part of the seed set for the subsystem, we have avoided any unnecessary selection of redundant

resources.

LetJ : R→ R be a cost functional representing the mass of a resource, or the quantity required

of a resource, or the resource’s availability, etc. We will again make use of a result in graph theory

for the next step. In graph theory, a subgraph of a finite directed graph is called abranchingif

it has the following properties: it contains all the vertices of the original graph (spanning); it is

circuit-free; and the number of edges entering any vertex isless than or equal to one. If the number

of entering edges is zero for only one of the subgraph’s vertices,r, and the remaining vertices

all have only one edge entering them, then the branching is a directed tree with rootr [20]. The

problem of finding a branching for which the sum of the edge costs is optimal (a maximum) was

solved independently in [22–24], is well-treated in [18,20,25], and can be efficiently implemented

using [26].

We have a similar situation if we first add a new machine,x′

i, so that all instances of the re-

sources (edges) that are used to produce machinexi (enter the root vertex) in the primary subsys-

tem (directed graph) are now used to produce machinex′

i. We can then use the Chu-Liu-Edmonds

algorithm to obtain a generation subsystem where Proposition 3.4 is still applicable, but where

redundant resources are also not present.

The implementation of the optimal branching algorithm thatis assumed requires that: 1) the

directed spanning tree that is found has a minimum rather than a maximum cost, and 2) a root

vertex is accepted as additional input, so that search for the tree starts from this root instead of the

29

first entry in a vertex-edge incidence list. We utilize thesenotions in formulating Step 3 of the RSI

algorithm.

Step 3

for all the matriarchs of the largest generation subsystemdo

if in the graph representation ofΓxi
, xi has entering edgesthen

Add a new vertexx′

i.

Change these edges so that they now enterx′

i.

end if

Find the directed minimum spanning tree (DMST) in the graph of Γxi
with root atxi.

Γximin ← the DMST ofΓxi
.

end for

Select theΓximin for which
∑

r∈Rximin
J(r) is a minimum.

We can now seed the resultant self-reproducing subsystem.

Step 4

Sxi
= {xi} ∪ (Rximin\Mxi

).

Next, we obtain the generation system that remains to be seeded.

Step 5

Remove allx ∈Mxi
from M .

We continue the process so far on the subsidiary generation subsystems, iterating from Step 2

until there are no more machines left inM . The entire seed set is the union of all the seed sets for

the various generation subsystems.

Step 6

if M 6= ⊘ then

Go to Step 2.

else

S ←
⋃

Sxi
.

30

Stop.

end if

3.3 Properties

In this section, we make some claims about the Restricted SeedIdentification algorithm and the

resultant seed that is output. The proofs of these claims canbe found in AppendixB.

Theorem 3.5. The RSI algorithm is correct. That is, the output of the algorithm is guaranteed to

be a seed for the given generation system.

Proof. See AppendixB.

Theorem 3.6. The RSI algorithm is complete. That is, the algorithm is guaranteed to output a

seed if one exists for the given generation system.

Proof. See AppendixB.

Theorem 3.7.The RSI algorithm is guaranteed to stop after a finite number of iterations. The best-

case time complexity for the operation of this algorithm isO(3n + nm + 2m + 1) iterations. The

worst-case time complexity for the operation of this algorithm is the worst ofO(n2m + 4n + 2m)

andO(n2 + 5n + m) iterations.

Proof. See AppendixB.

Theorem 3.8. The RSI algorithm produces a seed that is optimal with respectto the number of

machines and the cost of the resources in the seed.

The assumption of disjoint families is required to ensure optimality of the seed resource set.

Although the proposed algorithm also works for families that are not disjoint, no claims about

optimality can be made. However, we conjecture that the resultant seed is close to optimal in that

case. If the families in the system are not disjoint, then Step 6 of the RSI algorithm would need to

iterate from Step 1 instead of Step 2.

31

Proof. See AppendixB.

Theorem 3.9. Given a familyΓ = (U,M,R,G), the size of the seed either increases or stays

constant with expandingM or R.

Proof. See AppendixB.

Of the difficulties listed in Section1.3, (b) and (c) are effectively handled with the RSI algo-

rithm, (a) and (d) are ineffectively handled, and (e) is not handled.

3.4 Example Application

Let us use the RSI algorithm to analyze a modified version of theSemi-Autonomous Replicating

System. The original Suthakorn-Kwon-Chirikjian generation system in Section2.4 is a single

family, and so the application of the RSI algorithm terminates after one iteration. If we take into

account the necessity of batteries for operation, the application becomes non-trivial. We stipulate

that the robot controller (RCX) runs on charged batteries, andthat there is a battery charger running

on a supply of readily available electricity. Thus, the modified system is:

M = {x1, x2, x3, x4, x5, x6, x7, x8, x9, x10, x11},

R = {r1, r2, r3, r4, r5, r6, r7, r8, r9, r10}, where

x10 := battery charger

r10 := (electricity, uncharged batteries)

x11 := charged batteries

x11 = G(x10, r10)

and the definition forr3 becomes

r3 := (robot control system,x3, x11)

It follows that we have the generation diagram indicated in Fig. 3.2.

32

r1

r2

r3 ≻ (x3, x11)

r4 r4

r5

r6

r7 ≻ x4

r8 ≻ (x7, x8)

r9 ≻ x9

r10

x1

x2 x3

x4

x5

x6

x7

x8

x9

x10

x11

Figure 3.2: Directed graph representation of the modified Suthakorn-Kwon-Chirikjian robot.

This generation system is strongly regular, and is made up oftwo disjoint families. Applying

the RSI algorithm to this generation system yields an optimalseed for the system. To demonstrate

the workings of the algorithm, we give a part of the output at each step.

Step 1:The machine sets ofΓxi
, 1 ≤ i ≤ 11 are the following.

Mx1
= {x1, x2, x3, x4, x5, x6, x7, x8, x9}

Mx2
= {x4}

Mx3
= ⊘

Mx4
= ⊘

Mx5
= {x1, x2, x3, x4, x5, x6, x7, x8, x9}

Mx6
= {x9}

Mx7
= ⊘

Mx8
= ⊘

Mx9
= ⊘

Mx10
= {x11}

Mx11
= ⊘

Step 2: We can select eitherx1 or x5. Since the sets of machines that can be generated are

equal,x1 andx5 must be matriarchs for the same family.

Step 3:Forx1,

33

Rx1min = {r1, r2, r3, r4, r5, r6, r7, r8, r9}.

The only choice made by the DMST algorithm is the selection ofr9 overr4 in generatingx′

1,

since the former has lower cost.

Forx5, Rx5min = {r1, r2, r3, r4, r5, r6, r7, r8}.

The DMST algorithm does not selectr9.

Γx5min is selected.

Step 4:For the first family, we get

Sx5
= {x5} ∪ {r1, r2, r3\(x3, x11), r4, r5, r6,

r7\x4, r8\(x7, x8)}.

Step 5:We are left withM = {x10, x11}.

Step 6:We now go back to Step 2.

Step 2:We selectx10.

Step 3:Rx10min = {r10}.

Step 4:For the second family we get

Sx10
= {x10} ∪ {r10}.

Step 5:We are left withM = ⊘.

Step 6:A seed for this system is

S = {x5, x10} ∪ {r1, r2, r3\(x3, x11), r4, r5, r6,

r7\x4, r8\(x7, x8), r10}.

Thus, the battery charger and the prototype robot with gripper can initiate the semi-autonomous

replicating system. Contrary to intuition, the optimal seeddoes not include the prototype robot

together with resources, but instead includes the prototype robot with gripper and fewer required

34

resources.

3.5 Limitations

Limitations of the RSI algorithm may be attributed to the requirement for strong regularity in

the generation system. The computational complexity for checking whether a generation system

is strongly regular is exponential in the number of machinesand the rank of the system, and

polynomial in the number of resources. Hence, depending on the size of the self-reproducing

system, it may not be feasible to check for strong regularity.

As stated in the second flaw of the SIGA algorithm, there are instances where strong regularity

is not satisfied; a simple example is the naturally occurringozone cycle when it is attacked by chlo-

rine in the atmosphere [14]. The generation diagram of this self-reproducing system is illustrated

in Fig. 3.3, using the model:

M := {x1, x2, x3, x4, x5}, and

R := {r1, r2, r3, r4, r5},

where we define each of the constituent machines and resources in the manner that follows. The

sequence of generation steps is also outlined.

r1

r2 ≻ x1

r3 ≻ x5r4 ≻ x2

r5

x1 x2

x5 x3

x4

Figure 3.3: Directed graph representation of the ozone cycle being attacked by chlorine.

x1 := O2, or oxygen molecules

r1 := ultraviolet radiation

35

x2 := O, or excited oxygen atoms

x2 = G(x1, r1)

r2 := (x1,neutral particle)

x3 := O3, or ozone molecules

x3 = G(x2, r2)

x4 := ClO + O2

x5 := Cl + O2

r3 := x5 (note that justCl is required)

x4 = G(x3, r3)

r4 := x2

x5 = G(x4, r4)

r5 := (), a dummy resource

x1 = G(x5, r5)

In the above example, it is clear that a more powerful algorithm is desirable if such a self-

reproducing system is to be seeded.

36

Chapter 4

The SI Algorithm

This chapter formulates the general seed identification problem and presents an extended version

of the RSI algorithm, the SI algorithm.

4.1 Assumptions and Problem Definition

Just as in previous chapters, we start by providing a complete list of the assumptions required for

seeding a generation system.

Assumption 4.1.Both the number of machines and the number of resources are finite.

Assumption 4.2.An inexhaustible supply of each resource is available.

Assumption 4.3.All the machines in the generation system must be produced, although they need

not all belong to a seed.

Assumption 4.4. If machinex is contained in resourcer, i.e., x ≺ r, then the ordered list of

the elements ofr that does not contain the machinex also belongs to the set of resources, i.e.,

r\x ∈ R.

We define a seed as in Section3.1.

37

Definition 4.1. Let Γ = (U,M,R,G) be a generation system. Aseed of orderνµ for Γ is a set

S = MS ∪RS, where

MS = {x1, x2, . . . , xν}, MS ⊆M , and

RS = {r1, r2, . . . , rµ}, RS ⊆ R,

such that∀y1 ∈M,∃µ1 <∞,∃(rµ1
) ∈ RS,∃y0 ∈MS, such thatG(y0, (rµ1

)) = y1.

We now relax the notion of strong regularity.

Definition 4.2. The generation systemΓ = (U,M,R,G) is weakly regularif whenevery =

G(x, r), wherex andy are machines andr is a resource, we havey 6≺ r.

Thus, in a weakly regular generation system, no machine can be contained in any resource used

to produce that machine. In the next assumption, we will continue using the notions of families

and matriarchs as introduced in Section3.1.

Assumption 4.5.We assume that the generation system to be seeded,Γ = (U,M,R,G), is weakly

regular and made up of one or more disjoint families.

We can now state the following.

Seed Identification Problem 3.GivenΓ, minimize the total cost of the machines and resources

in a seed under Assumptions4.1through4.5.

4.2 Methodology

The idea of the SI algorithm is that under Assumption4.5, seeding the whole generation system

may be accomplished by seeding each individual family, as before. To seed by family, we still

need to determine the generation subsystems of each machine. However, the key difference is that

in the course of seeding the subsystem of matriarchx1, the machines to pick for the seed set of the

38

subsystem,Sx1
, arex1 and certain machines contained inRx1

. The additional machines fromRx1

are required because we no longer have strong regularity.

The next theorem suggests an approach to seeding weakly regular generation systems, and

replaces the sufficient condition for minimizing|MS| that was used by the RSI algorithm.

Theorem 4.1. Assume that the generation subsystem of machinex1, Γx1
= (U,Mx1

, Rx1
, G), is

weakly regular. Lety ∈Mx1
, and(rm+1) ∈ Rx1

. Suppose that:

(1) ∀i : 1 ≤ i ≤ m, xi+1 = G(x1, (ri)) 6= y.

(2) G(xm+1, rm+1) = G(x1, (rm+1)) = y.

(3) y ≺ (rm).

Then a seed set for the weakly regular family(U, (xm+1), (rm), G), is S = {x1, y} ∪ {(rm)\y},

andS has minimum|MS|.

Proof. See AppendixC.

Theorem4.1 states that if a sequence ofm resources,(rm), is used to produce a sequence of

m + 1 machines,(xm+1), and machiney is contained in(rm) but does not belong to(xm+1), and

the resource seed set is devoid of all machines, then the machine seed set must consist ofy and

the first machine in(xm+1). Hence, we must examine the sequences of machines generatedby a

matriarch when seeding weakly regular generation systems.We first present a Line Seeding (LS)

sub-algorithm, before giving the general SI algorithm.

4.3 The LS Sub-Algorithm

Input: a simple path in the directed minimum spanning tree (DMST) representation of the weakly

regular generation subsystem of a matriarch,x1, that begins atx1. The machines (vertices) in

this path constituteM , and the resources (edges) used in this path constituteR. Let the path

length ben.

39

Output: a seed set,S, for this simple path.

/*We create a new line graph, known as the “seeding graph,” inorder to help determine a

seed.*/

1: MS ← {x1}.

2: Initialize the seeding graph with one vertex,x1, and zero edges.

3: for 1 ≤ i ≤ n do

4: Let y ← G(x1, (ri)).

5: if y is not a vertex in the seeding graphthen

6: Add the machines contained in(ri)\(x1, y) that are not already on the seeding graph as

new vertices. Draw a directed edge from the last vertex to thefirst contained machine,

from the first contained machine to the second contained machine, and so on.

7: Add y to the end of this line graph with a directed edge that comes from the last contained

machine that was added.

8: else

9: if (xi)\x1 and all the contained machines in(ri)\(x1, y) arenot between thex1 andy

vertices on the line graph (any contained machines that are not already on the seeding

graph may simply be added in an appropriate position)then

10: MS ←MS ∪ {y}

11: end if

12: end if

13: end for

14: RS ← R\M .

15: S ←MS ∪RS.

At each iteration of the LS sub-algorithm, the number of intermediate machines grows by one.

If a path is not strongly regular because of one of the intermediate machines, then Theorem4.1

comes into play, and the seeding graph is a tool to indicate which machines should be added to the

machine seed set.

40

Theorem 4.2. The LS sub-algorithm is correct. That is, the output of the LSsub-algorithm is a

seed for a simple path in the DMST of the generation subsystemof a matriarch that starts at the

root of the tree.

Proof. See AppendixC.

4.4 Pseudocode

Input: a generation system ofn machines andm resources that is weakly regular and made up of

one or more disjoint families, and cost functionsJ : M → R andK : R→ R.

Output: a seed set,S, for this generation system.

1: for all xi ∈M , 1 ≤ i ≤ n do

2: DetermineΓxi
.

3: end for

/*In the above, with each machine (vertex) as a starting point (root) in the initial generation

system (directed graph), we need to find the subsystem (maximally connected subgraph) that

can be generated (reached from the root). Two well known algorithms to compute the reach-

able components in a graph are the Breadth-First Search (BFS) and the Depth-First Search

(DFS) algorithms [18,19,21].*/

4: Select theΓxi
where|Mxi

| ≥ |Mxj
|, ∀1 ≤ j ≤ n.

/*The idea is to seed a primary subsystem first, and then go back to a secondary subsystem

M\Mxi
and partition and seed iteratively.*/

5: for all the matriarchs of the largest generation subsystemdo

6: if in the graph representation ofΓxi
, xi has entering edgesthen

7: Add a new vertexx′

i.

8: Change these edges so that they now enterx′

i.

9: end if

10: Find the directed minimum spanning tree (DMST) in the graph of Γxi
with root atxi.

41

11: Γximin ← the DMST ofΓxi
.

12: for all simple paths in the DMST that begin atxi do

13: Use the LS sub-algorithm to seed each path.

14: end for

15: Sxi
←

⋃

Spath.

16: end for

17: Select theSxi
for which

∑

y∈MSxi

J(y) +
∑

r∈RSxi

K(r) is a minimum.

/*We ensure that the primary subsystem has the property thateach offspring is generated from

only one resource. Thereafter, we can select all resources to be a part of the seed set. We use

the Chu-Liu-Edmonds algorithm [20, 26] to find the DMST for each matriarch in the primary

subsystem. For each of these DMSTs, we can apply the DFS algorithm to find all the simple

paths that begin at the root and utilize the LS sub-algorithmto seed each path. The seed for

the entire subsystem for a particular DMST is the union of theseeds for each path. We pick

the DMST seed with minimum total cost.*/

18: Remove allx ∈Mxi
from M .

19: if M 6= ⊘ then

20: Go to Line4.

21: else

22: S ←
⋃

xi∈M♀
Sxi

.

23: end if

4.5 Properties

Theorem 4.3. The SI algorithm is correct. That is, the output of the algorithm is a seed for the

given generation system.

Proof. See AppendixC.

42

Theorem 4.4.The SI algorithm is complete. That is, the algorithm will output a seed if one exists

for the given generation system.

Proof. See AppendixC.

Theorem 4.5.The SI algorithm is guaranteed to stop after a finite number ofiterations. The time

complexity for the operation of this algorithm is polynomial.

Proof. See AppendixC.

Theorem 4.6. The SI algorithm produces a seed that is optimal with respect to the number of

machines and the cost of the seed.

Proof. See AppendixC.

The assumption of disjoint families is required to ensure optimality of the seed resource set.

Although the proposed algorithm will work for families thatare not disjoint, no claims about

optimality can be made. However, we conjecture that the resultant seed will be close to optimal. If

the system does not possess disjoint families, then line20of the SI algorithm would need to iterate

from line1 instead of line4.

Of the difficulties listed in Section1.3, (b), (c), (d) and (e) are effectively handled with the SI

algorithm, and (a) is ineffectively handled.

4.6 Example Application

Because the SI and RSI algorithms are so similar, the reader is referred to Chapter3 for an example

of a robotic self-replicating system that may be seeded withthe SI algorithm. The example in

this section serves only to illustrate the working of lines5 through17 of the SI algorithm. To

demonstrate the applicability toany self-reproducing system, not just robotic ones, we use the

naturally occurring atmospheric ozone cycle attacked by chlorine [14] as presented in Section3.5.

43

Every machine in the cycle is a matriarch for the family, and so a seeding graph has to be

produced for each machine. If we start withx1, then the LS sub-algorithm yields the following

line graph and machine seed set:

x1 x2 x3 x5 x4

MSx1
= {x1, x5}.

Similarly, starting withx2 yields:

x2 x1 x3 x5 x4

MSx2
= {x2, x5, x1}.

Starting withx3 yields:

x3 x2 x5 x4 x1

MSx3
= {x3, x5, x2}.

Starting withx4 yields:

x4 x2 x5 x1 x3

MSx4
= {x4, x2}.

Finally, starting withx5 yields:

x5 x1 x2 x3 x4

MSx5
= {x5}.

44

We let
∑

y∈MSxi

J(y) := |MSxi
|. The definition ofK is irrelevant in this example because the

setsRSxi
= R\M are equal for all1 ≤ i ≤ 5. Hence, for the cycle in Fig.3.3, we select the seed

where

MS = {x5}, and

RS = {r1, r2\x1, r3}.

From an environmental standpoint, it is interesting to notehow vital chlorine is to the cycle so

that it always shows up in the machine seed set in one form or another.

45

Chapter 5

Conclusions and Future Work

Three novel algorithms to identify a seed for certain classes of generation systems have been pro-

posed. These algorithms possess the following capabilities to various degrees: handling multi-

ple disjoint or intersecting generation subsystems; considering resources and their composition;

dealing with machines of deficient rank that are used as resources; isolating seed machines from

generation cycles; and overcoming the difficulty of seedingself-reproducing systems where the

generation of a machine depends on the assistance of its offspring.

The avenues for future research include examining how one can control a generation system

to produce an optimal seed. Once issues of control have been resolved, the ideal of finding a seed

that can initiate an evolving self-reproducing system needs to be pursued. With the theory in place

to analyze generation systems, the next step is to develop theory to synthesize generation systems.

All the algorithms presented here need to be extended to 1) allow for the determination, when-

ever possible, of a seed of pre-specified order; 2) incorporate some notion of the quantity of a seed

resource needed to perpetuate a system; and 3) recognize andcompensate for time constraints that

may impose a larger-size seed upon the system.

46

Appendix A

Product Manufacturing Cycle Model

Here, we describe a model of the product manufacturing cycle. This model demonstrates how the

production of copies of the merchandise require the assistance of entities that are affected by the

product. Let us assume the existence of a company that sells this product, and model the effect that

this product has on the company’s departments and the customer.

Product
Product Characteristics

Sales

Product

Customer

(Specifications, Sales)
Product Design

(Purchasing, Sales)

Production

Inventory

Figure A.1: Directed graph representation of a product manufacturing cycle.

The company’s sales department is directly affected by the merchandise because sales are

driven by the product’s characteristics. Sales personnel are responsible for matching the product

with potential customers. Customers, through specificationdocuments and the number of pur-

chases, impact future iterations of the product’s design. Manufacturing production is dependent

on this design, and on the purchasing of parts via monies generated from sales. Production creates

47

inventory, from which an instance of the product is selectedfor sale. This cycle is illustrated in the

Fig. A.1.

As the diagram indicates, it is clear that the cycle has “resources” that contain entities constitut-

ing a different stage of the cycle. In the context of the theory presented in this report, this product

manufacturing cycle model is an example of a weakly regular generation system.

48

Appendix B

RSI Algorithm Proofs

Theorem3.1.

Proof. The proof is by construction. Specifically, we outline an iterative algorithm that is guaran-

teed to identify a matriarch for a family. At the end of every iteration, the algorithm produces a

partition of the family into a candidate matriarch, a set of descendants of that candidate matriarch,

and a set of machines yet to be considered. During each iteration, the size of the set of machines

yet to be considered is decreased by at least one unit, the size of the set of descendants of the

candidate matriarch is increased by at least one unit, and the candidate matriarch itself may be

updated. The algorithm terminates when the set of machines to be considered is empty, at which

time the candidate matriarch is confirmed as a matriarch.

To initialize the algorithm, consider two arbitrary machinesx andy of the family. Sincex and

y are in the family, they have a common ancestorz. We consider three cases:

(1) If z = x, then the candidate matriarch isx, the set of descendants of the candidate matriarch

is the set of all machines obtained in the process of generatingy from x (includingy), and the

initialization is complete.

(2) If z = y, then the candidate matriarch isy, the set of descendants of the candidate matriarch

is the set of all machines obtained in the process of generatingx from y (includingx), and the

initialization is complete.

49

(3) If z is neitherx nory, then the candidate matriarch isz, the set of descendants of the candidate

is the set of all machines obtained in the process of generating bothx andy from z (including

x andy), and the initialization is complete.

Once the algorithm is initialized, each iteration proceedsas follows. Letx be the candidate

matriarch, and consider an arbitrary machiney in the set of machines yet to be considered. Since

x andy are in the family, they have a common ancestorz. We consider four cases:

(1) If z = x, then the candidate matriarch remainsx, and all the machines obtained in the process

of generatingy from x (includingy) are transferred into the set of descendants of the candidate

matriarch and removed from the set of machines yet to be considered. This completes the

iteration.

(2) If z = y, then the candidate matriarch becomesy, and all the machines obtained in the process

of generatingx from y (includingx) are transferred into the set of descendants of the candidate

matriarch and removed from the set of machines yet to be considered. This completes the

iteration.

(3) If z is neitherx nor y but is in the set of descendants of the candidate matriarch, then the

candidate matriarch remainsx, and all the machines obtained in the process of generatingy

from z (includingy) are transferred into the set of descendants of the candidate matriarch and

removed from the set of machines yet to be considered. This completes the iteration.

(4) If z is neitherx nor y but is in the set of machines yet to be considered, then the candidate

matriarch becomesz, and all the machines obtained in the process of generating bothx andy

from z (includingx andy) are transferred into the set of descendants of the candidate matriarch

and removed from the set of machines yet to be considered. This completes the iteration.

50

Theorem3.2.

Proof. Weak connectivity of the directed graph representation ofΓ = (U,M,R,G) follows di-

rectly from the definition of a family. Indeed, sinceΓ is a family, for a particular(x, y) ∈M,∃z ∈

M , and(rn), (rm) ∈ R such thatx = G(z, (rn)) andy = G(z, (rm)). In the directed graph repre-

sentation ofΓ, there is a path fromz to x through the sequence of edges labeled(rn), and a path

from z to y through the sequence of edges labeled(rm). Hence, in the undirected version of this

directed graph, there is a path fromx to y via z. By the definition of weak connectivity, this means

thatx andy are weakly connected in the directed graph. Since this is true for all vertex pairs in the

directed graph representation of a family, the entire graphis weakly connected.

Theorem3.3.

Proof. This proof is by contradiction. Let|MS| be a minimum.

Case 1: |M∞| > 0.

Suppose that∃x ∈ MS such thatρ(x) < ρ. From Generation Theory [5], sinceΓ is a family,

∃y ∈M, r ∈ R such thatx = G(y, r), andρ(x) < ρ(y) ≤ ρ.

From the definition of a seed (Definition3.1), ∃z ∈MS, (rn) ∈ RS such thaty = G(z, (rn)).

Thus, bothz andx belong toMS.

Let (rm) := ((rn), r), so that(rm) ∈ R.

ThenG(z, (rm)) = x, and soS ′ = (MS\{x}) ∪RS is a valid seed.

But |MS\{x}| < |MS|, and so|MS| is not a minimum, a contradiction.

Case 2: |M∞| = 0.

Suppose that∃x ∈ MS such thatρ(x) is not the maximum over all machines in the family.

From Generation Theory [5], sinceΓ is a family, ∃y ∈ M, r ∈ R such thatx = G(y, r), and

ρ(x) < ρ(y) < ρ.

From the definition of a seed (Definition3.1), ∃z ∈MS, (rn) ∈ RS such thaty = G(z, (rn)).

Thus, bothz andx belong toMS.

Let (rm) := ((rn), r), so that(rm) ∈ R.

51

ThenG(z, (rm)) = x, and soS ′ = (MS\{x}) ∪RS is a valid seed.

But |MS\{x}| < |MS|, and so|MS| is not a minimum, a contradiction.

Theorem3.4.

Proof. This proof follows directly from the definitions of strong regularity and generation subsys-

tem. Indeed, ifRSx
∩Mx = ⊘, then we need to have|MSx

| ≥ 1 so that at least one machine is

present to generate the system. SinceΓx is the generation subsystem ofx, x can generate every

machine inMx by definition. SinceΓx is strongly regular, any resources that contain machines

cannot be used to generate those machines, by definition. This implies that machines additional to

x are not needed. Therefore, the setSx = {x} ∪ (Rx\Mx) is a valid seed.

Moreover,|MSx
| = 1, the minimum possible.

Theorem3.5.

Proof. We have to prove that the output setS is a seed for the initial self-reproducing system.

SinceΓ is a union of families, andS =
⋃

Sx for x belonging to the set of matriarchsM♀, it

suffices to prove that eachSx is a seed for one of the constituent families. Thus, we will show that

each of Steps 1 through 4 is correct.

Step 1.

By assumption, the generation system to be seeded is made up ofone or more strongly regular

families. The directed graph representation of a single family is weakly connected. Thus, the

directed graph representation of the initial generation system is made up of one or more weakly

connected components.

Each vertex in the directed graph representation belongs toa weakly connected component.

Both the BFS or DFS algorithms are able to correctly find the vertices reachable from a root in a

weakly connected directed graph [18]. Thus, the use of either of these algorithms ensures that this

step is correct.

52

Step 2.

Here, the SI algorithm considers a finite number of sets each with finite cardinality. There are

several known algorithms that are able to correctly count the elements in a set and sort the sets in

descending order. The use of any of these algorithms resultsin the selection process being correct.

Step 3.

To find the directed minimum spanning tree for the selected weakly connected component

requires use of the Chu-Liu-Edmonds algorithm, or Tarjan’s efficient implementation of the same.

These algorithms have been proved to be correct [22, 23, 26].Just as in Step 2, there are known

algorithms for correctly evaluating the sum of a functionalon the elements of a set, sorting these

sums, and picking the set with the minimum sum. The use of any of these algorithms results in the

selection process being correct.

Step 4.

This part of the proof is similar to the proof of Theorem3.4. SinceΓxmin is the generation

subsystem ofx with the added property that each offspring is generated from only one resource,

x can generate every machine inMxmin = Mx by definition. SinceΓxmin is strongly regular, any

resources that contain machines cannot be used to generate those machines, by definition. This

implies that machines additional tox are not needed. Thus, the setSx = {x} ∪ (Rxmin\Mx) is a

valid seed.

Therefore,Sx is a seed for allΓx.

Theorem3.6.

Proof. We have to show that if a seed exists, the algorithm in this paper will output one possible

seed. Consider that a seed for a generation system always exists - this is the trivial seed, consisting

of all the machines and resources in the generation system, i.e.,S = M ∪R. Indeed, the algorithm

presumes this seed at the start, before removing redundant resources and machines that belong to

a matriarch’s subsystem. Theorem3.5shows that the output of the algorithm is a seed.

Thus, completeness is guaranteed.

53

Theorem3.7.

Proof. Note that each iteration of the algorithm removes elements from a set with finite cardinality,

and the algorithm stops once the set is depleted.

Consider the time complexity of Steps 1 to 5 during the first iteration of the algorithm.

In Step 1, the use of either one of the BFS or DFS algorithms has time complexityO(n + m)

[18].

In Step 2, the fact that each machine has to be visited in orderto determine the cardinality of

the machine set of its generation subsystem results in a timecomplexity ofO(n).

In Step 3, the time complexity of the DMST algorithm isO(npmp) [20], wherenp is the

number of machines in the primary subsystem, andmp is the number of resources in the primary

subsystem. Accounting for the possibility that there is more than one matriarch to apply the DMST

algorithm to, and that the cost of the seed for each matriarch’s subsystem needs to be evaluated,

the time complexity of this step isO(n♀npmp + n♀), wheren♀ is the number of matriarchs.

In Step 4, the fact that (in the worst case) all primary subsystem resources have to be visited in

order to remove any contained machines results in a time complexity of O(mp).

In Step 5, all primary subsystem machines have to be removed from the original machine set,

so that the time complexity of this step isO(np).

Thus the overall time complexity of Steps 1 to 5 during the first iteration of the algorithm is

O(2n + m + np + mp + n♀npmp + n♀).

In the best case, the SI algorithm executes once and there is only one matriarch. This implies

thatnp = n, mp = m andn♀ = 1, so that the resultant best-case time complexity isO(3n + nm +

2m + 1).

In the worst case, either the SI algorithm executes once and there aren matriarchs, or the SI

algorithm executesn times and each machine is a matriarch for a family that has a singleton set of

machines. Thus, we have two possibilities to consider.

The first possibility isnp = n, mp = m andn♀ = n, so that the resultant time complexity is

O(n2m + 4n + 2m).

54

The second possibility isnp = 1 andmp = 1 implying thatn♀ = 1, and after the first pass

through the algorithm, Steps 2-5 are repeatedn − 1 times. This time complexity isO(2n + m +

4) + O((n− 1)(n + 4)) = O(n2 + 5n + m).

Theorem3.8.

Proof. Let Γ = (U,M,R,G) be made up ofk strongly regular disjoint families. From Theorem

3.1, there are at leastk matriarchs. Since each family is the generation subsystem of a matriarch,

and each of these subsystems is strongly regular, Theorem3.4 indicates that the minimum|MS| is

k.

In the proof of Theorem3.5, we have shown that each pass through Steps 1 to 4 of the SI

algorithm produces a seed for a family, before the family is removed from the original generation

system. This seed for the family contains one machine. If there arek families in the original

system, the SI algorithm will iteratek times before returning a seed that is the union of the seed

sets for each family. Thus, there will bek machines inMS.

Therefore, the number of machines is optimal because it is the minimum it could be.

By assumption, all the machines in the given generation system need to be produced. Hence,

the optimal seed for each family must include the least costly resources such that all machines in

the family are generated. This implies that there must exista path between the root vertex and all

other vertices in the directed graph representation of the subsystem of a matriarch, and the DMST

that is found via the Chu-Liu-Edmonds algorithm satisfies this property with minimal cost. If there

are multiple matriarchs, the resource set that is selected is the least costly. Taking all such minimal

cost resources produces an optimal seed resource set for each family, and since the families are

disjoint, the union of these sets result in a seed that is optimal with respect to the cost of the

resources.

Theorem3.9.

Proof. As a result of expandingM or R, the rank of a family will either increase or stay constant.

This is because there are now more machines and resources in the generation system, and so it

55

is possible that machines originally located in the outer layer are now able to produce offspring.

Hence, it is possible that the rank increases.

Consider the original family,Γ, prior to the expansion ofM or R. Let x be a machine in the

outer layer ofΓ. Since generation always proceeds outwards [5] andΓ is a family, expandingM

or R may result in an increase in the rank of the system. If this occurs, there is now a degenerate

machiney that is a descendant ofx. In other words, now∃(rn) ∈ R such thatG(x, (rn)) = y.

Sincey is degenerate, it does not need to belong toMS, so that|MS| remains the same. Also,

if (rn) uses resources that already belong toRS, then|RS| stays unchanged.

However, if (rn) uses resources that differ from those inRS, then these resources need to

be added to the resource seed set. Hence,|RS| increases, producing a corresponding increase in

|S|.

56

Appendix C

SI Algorithm Proofs

Theorem4.1.

Proof. This proof follows directly from the definition of a seed. First, we are given thaty ≺ (rm).

Since∀1 ≤ i ≤ m, xi+1 = G(x1, (ri)), a seed for the weakly regular family(U, (xm+1), (rm), G)

is:

S = {x1} ∪ {(rm)};

= {x1, y} ∪ {(rm)\y}.

If RS ∩MS = ⊘, then we need to have|MS| ≥ 1 so that at least one machine is present to

generate the system. We are given thatx1 can produce every machine in(xm+1) using(rm). From

the seed setS above, since(rm) contains onlyy buty cannot be generated byx1, the system needs

to be started with bothx1 andy. Therefore,|MS| = 2, the minimum possible.

Theorem4.2.

Proof. This proof uses mathematical induction. We assume that the generation subsystem of our

matriarchx1, whereΓx1
= (U,Mx1

, Rx1
, G), is a DMST, and that we have selected a simple path

in this tree that starts atx1. Let M be the set of machines that are the vertices in this path, and

R be the set of resources that are the edges in this path. LetRS = R\M , andMS = {x1}.

57

Let r be the first resource edge in this path, ands be the second resource edge in this path. Let

y := G(G(x1, r), s), which is different fromG(x1, r) by the definition of a path.

ConsiderG(x1, r). If r ≻ y, the sub-algorithm takesMS = MS ∪ {y}, and by Theorem4.1,

the newMS forms a seed for the path when united withRS. Otherwise, the originalMS is still a

seed when united withRS, sincey is not required.

For the induction hypothesis, assume thatMS forms a seed withRS whenx1 uses a sequence

of (rk−1) resources. Lety := G(G(x1, (rk−1)), rk), which is different fromG(x1, (rk−1)) by the

definition of a path.

ConsiderG(x1, (rk−1)). If (rk−1) ≻ y, the sub-algorithm takesMS = MS ∪ {y}, and by

Theorem4.1, the newMS forms a seed for the path when united withRS. Otherwise, the original

MS is still a seed when united withRS, sincey is not required.

Theorem4.3.

Proof. We have to prove that the output setS is a seed for the initial self-reproducing system.

SinceΓ is a union of families, andS =
⋃

Sx for x belonging to the set of matriarchsM♀, it

suffices to prove that eachSx is a seed for one of the constituent families. Thus, we will show that

each of Steps 1 through 3 is correct.

Step 1.

By assumption, the generation system to be seeded is made up ofone or more weakly regular

families. The directed graph representation of a single family is weakly connected. Thus, the

directed graph representation of the initial generation system is made up of one or more weakly

connected components.

Each vertex in the directed graph representation belongs toa weakly connected component.

Both the BFS or DFS algorithms are able to correctly find the vertices reachable from a root in a

weakly connected directed graph [18]. Thus, the use of either of these algorithms ensures that this

step is correct.

58

Step 2.

Here, the SI algorithm considers a finite number of sets each with finite cardinality. There are

several known algorithms that are able to correctly count the elements in a set and sort the sets in

descending order. The use of any of these algorithms resultsin the selection process being correct.

Step 3.

To find the directed minimum spanning tree for the selected weakly connected component

requires use of the Chu-Liu-Edmonds algorithm, or Tarjan’s efficient implementation of the same.

These algorithms have been proved to be correct [22,23,26].We have shown by Theorem4.2that

the LS sub-algorithm is correct for any path in the tree. Since the union of seed sets is itself a

seed set,Sx =
⋃

Spath is a valid seed. Just as in Step 2, there are known algorithms for correctly

evaluating the sum of a functional on the elements of a set, sorting these sums, and picking the set

with the minimum sum. The use of any of these algorithms results in the selection process being

correct.

Therefore,Sx is a seed for allΓx.

Theorem4.4.

Proof. We have to show that if a seed exists, the algorithm in this paper will output one possible

seed. Consider that a seed for a generation system always exists - this is the trivial seed, consisting

of all the machines and resources in the generation system, i.e.,S = M ∪R. Indeed, the algorithm

presumes this seed at the start, before removing redundant resources and machines that belong to

a matriarch’s subsystem. Theorem4.3shows that the output of the algorithm is a seed.

Thus, completeness is guaranteed.

Theorem4.5.

Proof. The LS sub-algorithm is convergent because no circuits exist in the DMST, and there are

a finite number of paths of finite length that begin at the root of the tree. Each iteration of the SI

algorithm removes elements from a set with finite cardinality, and this algorithm stops once the set

is depleted. Consider the time complexity of Steps 1 to 4 during the first iteration of the algorithm.

59

In Step 1, the use of either one of the BFS or DFS algorithms has time complexityO(n + m)

[18].

In Step 2, the fact that each machine has to be visited in orderto determine the cardinality of

the machine set of its generation subsystem results in a timecomplexity ofO(n).

In Step 3, the time complexity of the DMST algorithm isO(npmp) [20], wherenp is the

number of machines in the primary subsystem, andmp is the number of resources in the primary

subsystem. The use of the DFS algorithm to identify the simple paths in the DMST has time

complexityO(n + m). The LS sub-algorithm visits all the machines in a simple path once, and

this is repeated for a finite number of simple paths. The fact that (in the worst case) all primary

subsystem resources have to be visited in order to remove anycontained machines results in a time

complexity ofO(mp). Accounting for the possibility that there is more than one matriarch to apply

the DMST algorithm to, this entire step could be repeatedn♀ times, wheren♀ is the number of

matriarchs. Thus this step has polynomial time complexity.

In Step 4, all primary subsystem machines have to be removed from the original machine set,

so that the time complexity of this step isO(np).

Thus the overall time complexity of Steps 1 to 4 during the first iteration of the algorithm is of

polynomial order.

Theorem4.6.

Proof. Let Γ = (U,M,R,G) be made up ofk weakly regular disjoint families. From Theorem

3.1, there are at leastk matriarchs. Since each family is the generation subsystem of a matriarch,

the minimum|MS| is k.

In the proof of Theorem4.3, we have shown that each pass through Steps 1 to 3 of the SI

algorithm produces a seed for a family, before the family is removed from the original genera-

tion system. By Theorem4.1, this seed contains the minimum number of machines to generate

each path. For paths with a common sub-path, the minimum number of machines to generate the

common sub-path is the same and is unaffected by the union operation. For disjoint paths, the min-

imum number of machines to generate the paths is the sum of theminimum number of machines to

60

generate each path, which is the number of machines producedby the union operation. Thus, the

number of machines in the machine seed set is a minimum for each family. If there arek disjoint

families in the original system, the SI algorithm will iteratek times before returning a seed that is

the union of the seed sets for each family. Therefore, the number of machines is optimal because

it is the minimum it could be.

By assumption, all the machines in the given generation system need to be produced. Hence,

the optimal seed for each family must include the least costly resources such that all machines in

the family are generated. This implies that there must exista path between the root vertex and all

other vertices in the directed graph representation of the subsystem of a matriarch, and the DMST

that is found via the Chu-Liu-Edmonds algorithm satisfies this property with minimal cost. If there

are multiple matriarchs, the seed set that is selected is theleast costly. Taking all such minimal cost

seeds produces an optimal seed set for each family, and sincethe families are disjoint, the union of

these sets results in a seed that is optimal with respect to cost.

61

Bibliography

[1] J. von Neumann,Theory of Self-Reproducing Automata, A. Burks, Ed. University of Illinois

Press, 1966.

[2] R. A. Freitas Jr. and R. C. Merkle,Kinematic Self-Replicating Machines. Landes Bioscience,

2004.

[3] M. Sipper, “Fifty years of research on self-replication: Anoverview,” Artifical Life, vol. 4,

no. 3, pp. 237–257, 1998.

[4] P. Owens and A. G. Ulsoy, “Self-replicating machines: Preventing degeneracy,” The Univer-

sity of Michigan, Tech. Rep. CGR-06-02, 2006.

[5] P. Kabamba, “The von Neumann threshold of self-reproducingsystems: Theory and compu-

tation,” The University of Michigan, Tech. Rep. CGR-06-11, 2006.

[6] A. Menezes and P. Kabamba, “Information requirements for self-reproducing systems in lu-

nar robotic colonies,” inProceedings of the 57th International Astronautical Congress, no.

IAC-06-A5.P.04, 2-6 October 2006.

[7] ——, “A combined seed-identification and generation analysis algorithm for self-reproducing

systems,” inProceedings of the 2007 American Control Conference, 11-13 July 2007, pp.

2582–2587.

62

[8] ——, “An optimal-seed identification algorithm for self-reproducing systems,” inProceed-

ings of the 58th International Astronautical Congress, no. IAC-07-D3.2.02, 24-28 September

2007.

[9] ——, “Optimal seeding of a class of self-reproducing systems,” in Submitted to the 17th IFAC

World Congress, 6-11 July 2008.

[10] B. Foing, “Roadmap for robotic and human exploration of the moon and beyond,” inProceed-

ings of the 56th International Astronautical Congress, no. IAC-05-A5.1.01, 17-21 October

2005.

[11] J. R. Wertz and W. J. Larson, Eds.,Space Mission Analysis and Design, 3rd ed. Microcosm

Press, 1999.

[12] R. Diestel,Graph Theory, 3rd ed. Springer-Verlag Heidelberg, 2005.

[13] H. Lodish, A. Berk, P. Matsudaira, C. A. Kaiser, M. Krieger, M. P. Scott, L. Zipursky, and

J. Darnell,Molecular Cell Biology, 5th ed. W. H. Freeman, 2004.

[14] P. V. Hobbs,Introduction to Atmospheric Chemistry. Cambridge University Press, 2000.

[15] W. H. Adey and K. Loveland,Dynamic Aquaria, 2nd ed. Academic Press, 1998.

[16] G. S. Chirikjian, Y. Zhou, and J. Suthakorn, “Self-replicating robots for lunar development,”

IEEE/ASME Transactions on Mechatronics, vol. 7, no. 4, Dec. 2002.

[17] J. Suthakorn, Y. T. Kwon, and G. S. Chirikjian, “A semi-autonomous replicating robotic

system,” inProceedings of the 2003 IEEE International Symposium on Computational Intel-

ligence in Robotics and Automation, Jul. 2003.

[18] T. H. Cormen, C. E. Leiserson, R. L. Rivest, and C. Stein,Introduction to Algorithms, 2nd ed.

The MIT Press, 2001.

63

[19] A. V. Aho, J. E. Hopcraft, and J. D. Ullman,The Design and Analysis of Computer Algo-

rithms. Addison-Wesley Publishing Company, 1974.

[20] S. Even,Graph Algorithms. Computer Science Press, 1979.

[21] J. Hopcroft and R. Tarjan, “Algorithm 447: Efficient algorithms for graph manipulation,”

Communications of the ACM, vol. 16, no. 6, pp. 372–378, 1973.

[22] Y. J. Chu and T. H. Liu, “On the shortest arborescence of a directed graph,”Scientia Sinica,

vol. 14, pp. 1396–1400, 1965.

[23] J. Edmonds, “Optimum branchings,”Journal of Research of the National Bureau of Stan-

dards, vol. 71B, no. 4, pp. 233–240, 1967.

[24] F. Bock, “An algorithm to construct a minimum directed spanning tree in a directed network,”

Developments in Operations Research, pp. 29–44, 1971.

[25] R. M. Karp, “A simple derivation of Edmonds’ algorithm for optimum branchings,”Net-

works, vol. 1, pp. 265–272, 1971.

[26] R. E. Tarjan, “Finding optimum branchings,”Networks, vol. 7, pp. 25–35, 1977.

64

	Introduction
	Motivation
	Background
	Difficulty of the Seeding Problem

	The SIGA Algorithm
	Assumptions and Problem Definition
	Methodology
	Pseudocode
	Example Application
	Limitations

	The RSI Algorithm
	Assumptions and Problem Definition
	Methodology
	Properties
	Example Application
	Limitations

	The SI Algorithm
	Assumptions and Problem Definition
	Methodology
	The LS Sub-Algorithm
	Pseudocode
	Properties
	Example Application

	Conclusions and Future Work
	Product Manufacturing Cycle Model
	RSI Algorithm Proofs
	SI Algorithm Proofs

